## Math 42 Midterm 2 Review

You will need a calculator to solve the problems marked $\star$.
You should NOT use a calculator for any other problems.
[0] Print out the inverse trigonometric values "flashcard" from my website, and cut into squares.
Randomly select an inverse trigonometric function "flashcard" and a trigonometric value "flashcard".
Identify the value of the inverse trigonometric function as applied to the trigonometric value.
Some combinations will generate values that can only be found using a calculator,
while other combinations will not generate any value. You should be able to identify those.
Repeat as many times as necessary to master the inverse trigonometric function values.
[1] Identify the middle value, amplitude, period and phase shift.
Find the coordinates of the 9 points discussed in lecture, corresponding to 2 complete cycles, starting at the phase shift.
Sketch a detailed graph of 2 complete cycles using the information you found.
Label all $x$ - and $y$ - values for the 9 points on the appropriate axes, using a consistent scale for each axis.
Also, write the equation and sketch the graph of the corresponding reciprocal function.
[a] $y=2 \sin \left(\frac{1}{2} x-\frac{5 \pi}{4}\right)-3$
[b] $y=-3 \cos \left(\frac{3 \pi}{4} x-\frac{\pi}{2}\right)-4$
[c] $y=-5 \sin \left(\frac{5 \pi}{3} x+\frac{2 \pi}{9}\right)+1$
[d] $y=4 \cos \left(3 x+\frac{5 \pi}{3}\right)+2$
[2] Sketch the graphs. You only need to get the general position and shape correct. Do NOT plot points. Find the domain, range, and equations of all asymptotes.
[a] $y=\sec x$
[b] $y=\csc x$
[c] $y=\cot x$
[d] $y=\tan x$
[e] $y=\sin ^{-1} x$
[f] $y=\cos ^{-1} x$
[g] $y=\tan ^{-1} x$
[3] Fill in the blanks. Use the graphs from [2].
[a] As $x \rightarrow-\frac{\pi^{+}}{2}$,
$\sec x \rightarrow$ $\qquad$ and $\tan x \rightarrow$ $\qquad$
[b] As $x \rightarrow 1^{-}$, $\cos ^{-1} x \rightarrow$ $\qquad$
[c] As $x \rightarrow-\pi^{+}$,
$\operatorname{CsC} X \rightarrow$ $\qquad$ and $\cot x \rightarrow$ $\qquad$
[d] As $x \rightarrow \infty$,
$\tan ^{-1} x \rightarrow$ $\qquad$
[e] As $X \rightarrow \frac{3 \pi^{-}}{2}$,
$\sec x \rightarrow$ $\qquad$ and $\tan X \rightarrow$ $\qquad$
[f] As $x \rightarrow-1^{+}$,
$\sin ^{-1} x \rightarrow$ $\qquad$
[g] As $x \rightarrow 0^{-}$,
$\operatorname{CSC} x \rightarrow$ $\qquad$ and $\cot x \rightarrow$ $\qquad$
[h] As $x \rightarrow-\frac{3 \pi^{+}}{}{ }^{+}$,
$\sec x \rightarrow$ $\qquad$ and $\tan X \rightarrow$ $\qquad$
[i] As $x \rightarrow-1^{+}$,
$\cos ^{-1} x \rightarrow$ $\qquad$
[j] As $x \rightarrow 0^{+}$,
$\operatorname{CSC} X \rightarrow$ $\qquad$ and $\cot x \rightarrow$ $\qquad$
[k] As $x \rightarrow-\infty$,
$\tan ^{-1} x \rightarrow$ $\qquad$
[1] As $X \rightarrow \frac{\pi}{2}^{-}$,
$\sec x \rightarrow$ $\qquad$ and $\tan x \rightarrow$ $\qquad$
[m] As $x \rightarrow 1^{-}$,
$\sin ^{-1} x \rightarrow$ $\qquad$
[h] As $x \rightarrow \pi^{-}$,
$\operatorname{CSC} X \rightarrow$ $\qquad$ and $\cot x \rightarrow$ $\qquad$
[4] Simplify the following expressions. Some expressions have no value.
[a] $\sin \left(\sin ^{-1} \frac{2}{3}\right)$
[b] $\tan ^{-1}\left(\tan \frac{\pi}{6}\right)$
[c] $\cos ^{-1}\left(\cos \left(-\frac{\pi}{3}\right)\right)$
[d] $\sin ^{-1}\left(\sin \left(-\frac{\pi}{4}\right)\right)$
[e] $\cos ^{-1}\left(\cos \frac{5 \pi}{6}\right)$
[f] $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
[g] $\tan \left(\tan ^{-1}\left(-\frac{5}{4}\right)\right)$
[h] $\cos \left(\cos ^{-1} \frac{4}{3}\right)$
[i] $\tan \left(\tan ^{-1} \frac{4}{5}\right)$
[j] $\cos \left(\cos ^{-1}\left(-\frac{3}{4}\right)\right)$
[k] $\sin \left(\sin ^{-1}\left(-\frac{3}{2}\right)\right)$
[1] $\tan ^{-1}\left(\tan \left(-\frac{3 \pi}{4}\right)\right)$
[5] Simplify the following expressions. Some expressions have no value.
[a] $\sin \left(\tan ^{-1} \frac{2}{3}\right)$
[b] $\sec \left(\sin ^{-1}\left(-\frac{3}{4}\right)\right)$
[c] $\csc \left(\cos ^{-1} \frac{3}{2}\right)$
[d] $\cos \left(\sin ^{-1} \frac{4}{5}\right)$
[e] $\tan \left(\cos ^{-1} \frac{1}{3}\right)$
[f] $\cot \left(\sin ^{-1}\left(-\frac{4}{3}\right)\right)$
[g] $\csc \left(\tan ^{-1}(-2)\right)$
[c] $\cot \left(\cos ^{-1}\left(-\frac{2}{5}\right)\right)$
[6] Simplify the following expressions.
[a] $\tan \left(\sin ^{-1}(x+1)\right)$
[b] $\cos \left(\tan ^{-1} \frac{t}{2}\right)$
[c] $\sin \left(\cos ^{-1} \frac{\sqrt{1-y}}{2}\right)$
[7] Find an equation for each graph.
[a]

[b]

[8] AJ has been reading about biorhythms, and decided to make a chart of his overall mood starting on Jan 1. On a scale of 1 to 10 , AJ’s mood reached a high of 9.5 on Jan 17, and dropped continually to a low of 2 on Feb 2, before starting to rise again. Assume AJ’s mood corresponds to a sinusoidal function.
[a] Find an equation for his mood on the $t^{\text {th }}$ day since Jan 1.
[b] $\star \quad$ What will AJ’s mood be on Mar 19 ?
[9] A 265 meter cable connects the roofs of two buildings.
From the roof of the first building, the angle of depression to the roof of the second building is $41^{\circ}$.
From the base of the first building, the angle of elevation to the roof of the second building is $67^{\circ}$.
[a] Find the height of each building, and the distance between the bases of the buildings.
[b] Find the angle of elevation of the roof of the first building from the base of the second building.
[10] $\star \quad$ A 17 foot ladder is leaning against the wall of a building. The base of the ladder is 8 feet from the base of the building.
[a] Find the angle between the ladder and the building.
[b] Find the angle between the ladder and the ground.
[11] If a ferris wheel is turning at a constant rate, then the height of a particular seat relative to the center of the wheel is a form of simple harmonic motion.

Consider a ferris wheel of radius 65 feet, which takes 8 seconds for a seat to go from the bottom of the wheel to the top. Assume the height of a seat is considered positive if it is above the center of the ferris wheel, and negative if it is below.
[a] What is the frequency of the wheel ?
[b] Find the equation of motion of a seat which starts at the bottom of the wheel.
[c] Find the equation of motion of a seat which is directly to the right of the center of the wheel, if the wheel is turning clockwise.
[12] A car is travelling at 57 miles per hour directly southward.
At 2 pm , the car is 81 miles from the center of a town, on a bearing of $281^{\circ}$ from the center.
At 2:30pm, the car turns and begins travelling directly eastward at the same speed.
[a] At 2pm, how far is the car north/south and east/west of the center of town ?
[b] At 2:30pm, how far is the car north/south and east/west of the center of town ?
[c] At 2:30pm, how far is the car from the center of town, and on what bearing from the center ?
[c] At what time will the car be directly southeast of the center of town ?

